Michael Bolton is one of the software testing industry's deep thinkers. He has an impressive ability to logically analyze testing problems and clearly explain complex issues.

I like how Michael summarizes what people often really mean when they say "it works"*

It works really means...

There's a lot of truth in those words, isn't there? I've shared these words from Michael in test design trainings I've done recently and found that they immediately resonate with quite a few testers. It seems that anyone who has been in testing for more than a while has seen teams of testers test a feature or function a bit, declare that "it works," only to discover later that the feature/function works in some situations but does not work in other situations.

What's a tester to do? We recommend testers use two deliberate strategies: use a rich oracle and cover critical interactions.

First, use a "rich oracle" to enage your brain more actively and train your eye to better recognize potential issues. Imagine the following scenario. 3 people are in a room. The first person, a guy plucked from the street outside at random, is given a set of 10 written test scripts to execute and told to follow the test scripts, step-by-step in return for a six pack of beer. Being a fan of beer, and endowed with the dual-abilities of being able to both read instructions and follow instructions, he performs what is asked of him dutifully.

In the room are two testers who are allowed to observe the tests being executed but who are not allowed to communicate.

  • The first tester has a list of ten numbers, each with three boxes for checkmarks. He operates in a world of black and white where if the documented "Expected Result" is consistent with what they observe, they write a green check mark. If the "Expected Result" is inconsistent, they write a green "X."
  • The second tester operates differently. She goes beyond. She goes deeper. She notices subtle things along the way that look unexpected, or not quite right. She makes notes of those things. In doing so, she thinks of new test ideas that have not been executed yet. She documents those test ideas to explore further later, provided there is time.

I think you see where I'm going with this. My point is that the more curious approach adopted by the second tester is a far more valuable one to people who care about software quality. Why is this? Here too, Michael Bolton has words of wisdom to share that resonate well:

If you insist you need written requirements to find bugs

Second, testers should adopt test case design approaches in order to avoid the "under some conditions... once" risk. One of the most important benefits of using our Hexawise test case design tool is that, even with very basic pairwise test sets, every feature or function you test will automatically be tested multiple times. And under as many different conditions as possible in the time you have available.

After close to 10 years of introducing new groups of software testers to these types of test design approaches, people have a hard time believing how big efficiency and thoroughness improvements in this area are. That's why we always strongly encourage teams using our optimized test case selection approach to do apples-to-apples comparisons of coverage and defect-finding effectiveness. We work with teams to compare the coverage gaps of their existing "business as usual" test sets to how thorough they are when Hexawise is used to generate an optimized set of tests. Images of one recent coverage analysis is shown below. Data on defect-finding effectiveness and defect finding efficiency improvements resulting from optimized test case selection can also be found here.

Testing Coverage Analysis Hexawise Pairwise Combinatorial Testing OATS

 

*With thanks to Jon Bach for sharing this on his blog.

By: Justin Hunter on Sep 25, 2014

Categories: Pairwise Software Testing, Pairwise Testing, Combinatorial Testing, Software Testing